THE UNIVERSITY of EDINBURGH

informatics

Microsoft

Research

PhD Scholarship

Centre for Intelligent Systems
and their Applications

cisa

Configuration Inference using CSPs

6 CSP Generation

The specification is now complete. The ConfSolve compiler is
invoked, and the specification is compiled into a Constraint
Satisfaction Problem (CSP) expressed in the MiniZinc
language (a standard cross-solver format). MiniZinc is not
object-oriented, and the generated code is therefore more
complex. A snippet of this code is given in Figure 2, below.

John. A Hewson, University of Edinburgh
john.hewson@ed.ac.uk

Supervisor: Paul Anderson, University of Edinburgh
dcspaul@ed.ac.uk

include "globals.mzn";

The complexity of typical computing installations has increased to the point where

automated configuration is desirable. We developed a high-level, declarative specification T e e ey
language (ConfSolve) for system configuration, from which valid configurations are inferred =~ 77T

via compilation of the specification into a Constraint Satisfaction Problem (CSP). R s - T T e

var set of {1, 2, 3} : root_machinesj /* root.machines */
var set of {4, 5, 6, 7} : root services; /* root.services */

1 Background L . e e
g Likewise, the four services are declared as subtypes of the Vo 1) 30 33 ¢ ret induetrions wansens 1% root. Industrious. rans.on %/

var {1, 2, 3} : root_schizoid_runs__onj /* root.schizoid.runs_on */
This is a complete example of a simplified Service class. A e i e U s e S
. . var Int : sum_s_required cpu_402_ml_s2; /* sum.s.required_cpu.402.ml.s2 */
var Int : sum_s_required memor y_402_ml_s2; /* sum.s.required_memory.402.ml.s2 *
datacentre configuration problem, where a set of class FrontEnd extends Service { e s T Ay i fo oy A
fo u r h eterog en eo u S SerV| CeS n eed to be aI I Ocated var Int : sum_s_required cpu_402_ml_s4; /* sum.s.required_cpu.402.ml.s4 */
onto three heterogeneous machines. All ConfSolve

Where r‘eqUiPEd_C pU == ; var Int : sum_s_required memor y_402_ml_s4; /* sum.s.required_memory.402.ml.s4 *
source code is shown.

~ 9~ ~ ~

. var Int : sum_s_required__cpu_402_m2_sl; /* sum.s.required_cpu.402.m2.s1 */
where required_memory == 512;
where required_capabilities ==

/* constraints */

Capability.IsIISEnabled,
Capability.HasGigEther }; iﬁﬂiﬁﬁiﬁiiﬁﬁiiﬁiﬁﬁii¥)

constraint (card(root_chatter capabilities) <= 6);

} constraint (card(root front_ _end required_ _capabilities) <= 6);
constraint (card(root omniscient required _capabilities) <= 6);
constraint (card(root_industrious_required capabilities) <= 6);
constraint (card(root_schizoid required capabilities) <= 6);

<= 6;
<=6

5
B

2 Primitives

constraint (card(root machines) >= 3);
constraint (card(root services) >= 4);

class Omniscient extends Service {

Each machine has a set of up to six capabilities, which may where required_cpu == 6; S i o
. 1 - . /* System */ - -
or may not be present. Likewise ach service will require "":e"e req“}rej—mem‘)g){ lit (40963 Caoability. TeSOLEnabled Contrain (2 1 soot_typicnt capabilicies)
: e - where required_capabilities == apability.Is naole Constraint (5 in zoot_typical_capanilitics);
certain capabilities in order to run. Below, we define an 9 —cap { Cap L1ty Q ’ constrait (5 in zoot_typical_cspabilities);
. age, . . . Capabl 1 lty . Ha S RAIDS }; constraint (card(root _monster capabilities) = 4);
enumeration of capabilities, and declare a new primitive set }
type, with cardinality from zero to six. J+ forall: sum +/
constraint (sum_s_required cpu 402 ml_sl =) . . .)
. class Industrious extends Service { T L T e e
enum Capablllty { Where r'eqUir'ed_C pu == ; ((root:schizoid_rec_luifed_c}; E bool2int((7 in root_se;vices))) * boolZint((root_scgizoid_runs__on =_l))))),
IsIISEnabled, IsSQLEnabled, HasDualProc i == . * forall: sun *
’ Q) . ’ Whe re r‘eq u 1 r\ed_memo r‘y -= 5 1 2 J éonztrai#t (sum_/s_required_memory_éllo2_ml_sl =) .) ‘
HasQuadProc, HasRAIDS, HasGigEther where required_capabilities == { Capability.HasDualProc }; (Hoo oncon o vequtsed mamory * hoors int((5 dn rook ociiens)) ® heoisine((roos omhiocicat s, 3 e 1)) 4
} ((root:industrioug_required__memory * bool2int((6 in rooE_services))) * bool2int((roo;_industrioas_ruE__on =1)))) +
} ((root_schizoid required_memory * bool2int((7 in root_services))) * bool2int((root_schizoid runs__on = 1)))));
° ° ° é;nz::zi#t ?LSJTlm*_/s_required_cpu_402_lm1_52 =))))
primitive Capabilities extends Capability[®..6] { class Schizoid extends Service { (oo i seicm raaotiad 0+ sooiFint (i raor Semsicee)) 2 bootEine(ronn SRS e S DY
} . . ((root_industrious_required cpu * bool2int((6 in root_services))) * bool2int((root_industrious_runs__on = 1)))) +
Where r'equ:Lr'ed_C pU ==) ((root_schizoid required_ cpu * bool2int((7 in root_services))) * bool2int((root_schizoid runs__on = 1)))));
where required_memory == 1024;
3 Classes where required_capabilities == { Capability.HasDualProc }; _ o _
} Figure 2 — A sample of the generated MiniZinc code. The actual file

ConfSolve is object-oriented, and provides single has 378 lines in total.

inheritance. We need to declare classes to describe both
machines and services, shown below. Note the runs_on
variable which is declared as an object reference.

4 Root Class

Now that the class structure has been declared, we need to
define some instances of the classes. This is done in a
special root class, called System. The root class is a
singleton and will be automatically instantiated.

7 CSP Solving

The CSP, expressed in MiniZinc, is then solved using the
Gecode solver (although others may be used), which finds
all four solutions to this problem in 4ms. Alternatively, we can
choose to find just a single solutions, or as many as possible
in a fixed period of time, which is more feasible for very large
problems in the future.

class Machine {
var cpu as int;
var memory as int;

} root class System {

var typical as Typical;
var monster as Monster;
var chatter as Chatter;

class Service {
var required cpu as int;
var required_memory as int;
var required_capabilities as Capabilities;
var runs_on as ref Machine;

8 Solutions

The output of Gecode is a simple text-based description of
the variable assignments. These are parsed by ConfSolve
and used to populate the existing object-oriented model of
the system, including assignments of primitive values, and
object references which the solver has calculated. Figure 3
shows a UML instance diagram for solution #1.

var front_end as FrontEnd;

var omniscient as Omniscient;

} var industrious as Industrious;
var schizoid as Schizoid;

Capabilities

l

}

int[e..6]

Figure 1 — UML Class diagram of the completed specification

Next, the three machines are declared as subtypes of the

Machine class, Figure 1 shows a UML class diagram.

5 Constraints

The description of the system objects is now complete. But
which instantiations are valid? We need to specify some
constraints over the variables declared in System.

We need to ensure that when a service runs_on a given
machine, that the machine provides the required capabilities,
and that the amount of CPU and RAM consumed by other
services running on the same machine does not exceed that
provided.

To express this succinctly, two set variables (of references)
are declared, which will be resolved automatically at runtime:

var machines as (ref Machine)[3];
var services as (ref Service)[4];

9 Qutput Generators

Finally, the fully populated object model is used to generate
configuration files. In order to configure any system, we must
be able to produce any output format. The solution is to
provide an interface to the in-memory object model, available
via C# and JavaScript. We developed an output generator
which produces XML, using just over thirty lines of
JavaScript.

10 Future Work

We intend on scaling up the problem size to find the limits of
current CSP solvers. We are considering investigating
distributed constraints, and possibly using SMT as a solver
backend.

class Typical extends Machine { forall (m in machines, s in services) { Acknowledgements
where cpu == 3; if (s.runs_on ==m) { This work was supported by Microsoft Research through its European
where memory == 2048; sum (s.required_cpu) <= m.cpu; PhD Scholarship Programme.

where capabilities == { Capability.

HasDualProc,

sum (s.required_memory) <= m.memory;

y Capability.HasRAID5 }; s.required capabilities subset m.capabilities;
}
class Monster extends Machine {)
where cpu == 12; Sveten
where memory == 16384;
where capabilities == { Eapag%i%’iy.asI;SErllzbled, colenentorss /i ant celomentots> L <calenentors> N 4 cerdaus ront_ond "\ “<elenentors>
apability.HasDualProc,
Capa bll 1ty -Ha SQuad Proc ? Omniscient Schizoid Industrious FrontEnd
Capability.HasRAID5, required_cpu : 6 <celementofss required_cpu : 2 ceetementofrs | required_cpu : 1 required_cpu : 1 celementofss
Capability-Ha SGigEtheP }, required_memory : 4096 machines monster required_memory : 1024 machines ypical required_memory : 512 chatter required_memory : 512 machines
} required_capabilities : {2, 5} required_capabilities : {3} required_capabilities : {3} required_capabilities : {1, 6}

class Chatter extends Machine {
where cpu == 12;

runs_on runs_on runs_on J:unson

Machine Machine Machine
where memory == 16384; P P o 2
where capabilities == { Capability.IsIISEnabled, R nemory : 2043 nemory : 1024
Capability.HaSGigEtheP }; capabilities : 2..5 capabilities : {3, 5} capabilities : {1, 6}

Figure 3 — UML instance diagram of solution #1. The runs_on references have been resolved by the CSP solver.

