
4 Root Class

Now that the class structure has been declared, we need to

define some instances of the classes. This is done in a

special root class, called System. The root class is a

singleton and will be automatically instantiated.

1 Background

This is a complete example of a simplified

datacentre configuration problem, where a set of

four heterogeneous services need to be allocated

onto three heterogeneous machines. All ConfSolve

source code is shown.

3 Classes

ConfSolve is object-oriented, and provides single

inheritance. We need to declare classes to describe both

machines and services, shown below. Note the runs_on

variable which is declared as an object reference.

Configuration Inference using CSPs

John. A Hewson, University of Edinburgh
john.hewson@ed.ac.uk

Supervisor: Paul Anderson, University of Edinburgh
dcspaul@ed.ac.uk

The complexity of typical computing installations has increased to the point where

automated configuration is desirable. We developed a high-level, declarative specification

language (ConfSolve) for system configuration, from which valid configurations are inferred

via compilation of the specification into a Constraint Satisfaction Problem (CSP).

PhD Scholarship

include "globals.mzn";
set of int : Int = -65535..65535;

/* variables */
var Int : root_typical_cpu = 3; /* root.typical.cpu */
var Int : root_typical_memory = 2048; /* root.typical.memory */
var set of Int : root_typical_capabilities; /* root.typical.capabilities */

...

var Int : root_front__end_required__cpu = 1; /* root.front_end.required_cpu */
var Int : root_front__end_required__memory = 512; /* root.front_end.required_memory */
var set of Int : root_front__end_required__capabilities; /* root.front_end.required_capabilities */

...

var set of {1, 2, 3} : root_machines; /* root.machines */
var set of {4, 5, 6, 7} : root_services; /* root.services */

var {1, 2, 3} : root_front__end_runs__on; /* root.front_end.runs_on */
var {1, 2, 3} : root_omniscient_runs__on; /* root.omniscient.runs_on */
var {1, 2, 3} : root_industrious_runs__on; /* root.industrious.runs_on */
var {1, 2, 3} : root_schizoid_runs__on; /* root.schizoid.runs_on */

var Int : sum_s_required__cpu_402_m1_s1; /* sum.s.required_cpu.402.m1.s1 */
var Int : sum_s_required__memory_402_m1_s1; /* sum.s.required_memory.402.m1.s1 */
var Int : sum_s_required__cpu_402_m1_s2; /* sum.s.required_cpu.402.m1.s2 */
var Int : sum_s_required__memory_402_m1_s2; /* sum.s.required_memory.402.m1.s2 */
var Int : sum_s_required__cpu_402_m1_s3; /* sum.s.required_cpu.402.m1.s3 */
var Int : sum_s_required__memory_402_m1_s3; /* sum.s.required_memory.402.m1.s3 */
var Int : sum_s_required__cpu_402_m1_s4; /* sum.s.required_cpu.402.m1.s4 */
var Int : sum_s_required__memory_402_m1_s4; /* sum.s.required_memory.402.m1.s4 */
var Int : sum_s_required__cpu_402_m2_s1; /* sum.s.required_cpu.402.m2.s1 */

...

/* constraints */
constraint (card(root_typical_capabilities) <= 6;;
constraint (card(root_monster_capabilities) <= 6);
constraint (card(root_chatter_capabilities) <= 6);
constraint (card(root_front__end_required__capabilities) <= 6);
constraint (card(root_omniscient_required__capabilities) <= 6);
constraint (card(root_industrious_required__capabilities) <= 6);
constraint (card(root_schizoid_required__capabilities) <= 6);
constraint (card(root_machines) >= 3);
constraint (card(root_services) >= 4);

/* System */
constraint (card(root_typical_capabilities) = 2);
/* System */
constraint (3 in root_typical_capabilities);
/* System */
constraint (5 in root_typical_capabilities);
/* System */
constraint (card(root_monster_capabilities) = 4);

...

/* forall: sum */
constraint (sum_s_required__cpu_402_m1_s1 =

(((((root_front__end_required__cpu * bool2int((4 in root_services))) * bool2int((root_front__end_runs__on = 1))) +
((root_omniscient_required__cpu * bool2int((5 in root_services))) * bool2int((root_omniscient_runs__on = 1)))) +
((root_industrious_required__cpu * bool2int((6 in root_services))) * bool2int((root_industrious_runs__on = 1)))) +
((root_schizoid_required__cpu * bool2int((7 in root_services))) * bool2int((root_schizoid_runs__on = 1)))));

/* forall: sum */
constraint (sum_s_required__memory_402_m1_s1 =

(((((root_front__end_required__memory * bool2int((4 in root_services))) * bool2int((root_front__end_runs__on = 1))) +
((root_omniscient_required__memory * bool2int((5 in root_services))) * bool2int((root_omniscient_runs__on = 1)))) +
((root_industrious_required__memory * bool2int((6 in root_services))) * bool2int((root_industrious_runs__on = 1)))) +
((root_schizoid_required__memory * bool2int((7 in root_services))) * bool2int((root_schizoid_runs__on = 1)))));

/* forall: sum */
constraint (sum_s_required__cpu_402_m1_s2 =

(((((root_front__end_required__cpu * bool2int((4 in root_services))) * bool2int((root_front__end_runs__on = 1))) +
((root_omniscient_required__cpu * bool2int((5 in root_services))) * bool2int((root_omniscient_runs__on = 1)))) +
((root_industrious_required__cpu * bool2int((6 in root_services))) * bool2int((root_industrious_runs__on = 1)))) +
((root_schizoid_required__cpu * bool2int((7 in root_services))) * bool2int((root_schizoid_runs__on = 1)))));

...

Figure 1 – UML Class diagram of the completed specification

root class System {
var typical as Typical;
var monster as Monster;
var chatter as Chatter;

var front_end as FrontEnd;
var omniscient as Omniscient;
var industrious as Industrious;
var schizoid as Schizoid;

...
}

var machines as (ref Machine)[3];
var services as (ref Service)[4];

forall (m in machines, s in services) {
if (s.runs_on == m) {

sum (s.required_cpu) <= m.cpu;
sum (s.required_memory) <= m.memory;
s.required_capabilities subset m.capabilities;

}
}

5 Constraints

The description of the system objects is now complete. But

which instantiations are valid? We need to specify some

constraints over the variables declared in System.

2 Primitives

Each machine has a set of up to six capabilities, which may

or may not be present. Likewise ach service will require

certain capabilities in order to run. Below, we define an

enumeration of capabilities, and declare a new primitive set

type, with cardinality from zero to six.

enum Capability {
IsIISEnabled, IsSQLEnabled, HasDualProc,
HasQuadProc, HasRAID5, HasGigEther

}

primitive Capabilities extends Capability[0..6] {
}

8 Solutions

The output of Gecode is a simple text-based description of

the variable assignments. These are parsed by ConfSolve

and used to populate the existing object-oriented model of

the system, including assignments of primitive values, and

object references which the solver has calculated. Figure 3

shows a UML instance diagram for solution #1.

Figure 3 – UML instance diagram of solution #1. The runs_on references have been resolved by the CSP solver.

class Machine {
var cpu as int;
var memory as int;

}

class Service {
var required_cpu as int;
var required_memory as int;
var required_capabilities as Capabilities;
var runs_on as ref Machine;

}

6 CSP Generation

The specification is now complete. The ConfSolve compiler is

invoked, and the specification is compiled into a Constraint

Satisfaction Problem (CSP) expressed in the MiniZinc

language (a standard cross-solver format). MiniZinc is not

object-oriented, and the generated code is therefore more

complex. A snippet of this code is given in Figure 2, below.

Figure 2 – A sample of the generated MiniZinc code. The actual file

has 378 lines in total.

7 CSP Solving

The CSP, expressed in MiniZinc, is then solved using the

Gecode solver (although others may be used), which finds

all four solutions to this problem in 4ms. Alternatively, we can

choose to find just a single solutions, or as many as possible

in a fixed period of time, which is more feasible for very large

problems in the future.

9 Output Generators

Finally, the fully populated object model is used to generate

configuration files. In order to configure any system, we must

be able to produce any output format. The solution is to

provide an interface to the in-memory object model, available

via C# and JavaScript. We developed an output generator

which produces XML, using just over thirty lines of

JavaScript.

class Typical extends Machine {
where cpu == 3;
where memory == 2048;
where capabilities == { Capability.HasDualProc,

Capability.HasRAID5 };
}

class Monster extends Machine {
where cpu == 12;
where memory == 16384;
where capabilities == { Capability.IsIISEnabled,

Capability.HasDualProc,
Capability.HasQuadProc,
Capability.HasRAID5,
Capability.HasGigEther };

}

class Chatter extends Machine {
where cpu == 12;
where memory == 16384;
where capabilities == { Capability.IsIISEnabled,

Capability.HasGigEther };
}

class FrontEnd extends Service {
where required_cpu == 1;
where required_memory == 512;
where required_capabilities == { Capability.IsIISEnabled,

Capability.HasGigEther };
}

class Omniscient extends Service {
where required_cpu == 6;
where required_memory == 4096;
where required_capabilities == { Capability.IsSQLEnabled,

Capability.HasRAID5 };
}

class Industrious extends Service {
where required_cpu == 1;
where required_memory == 512;
where required_capabilities == { Capability.HasDualProc };

}

class Schizoid extends Service {
where required_cpu == 2;
where required_memory == 1024;
where required_capabilities == { Capability.HasDualProc };

}

Likewise, the four services are declared as subtypes of the

Service class.

10 Future Work

We intend on scaling up the problem size to find the limits of

current CSP solvers. We are considering investigating

distributed constraints, and possibly using SMT as a solver

backend.

Acknowledgements

This work was supported by Microsoft Research through its European

PhD Scholarship Programme.

Next, the three machines are declared as subtypes of the

Machine class, Figure 1 shows a UML class diagram.

To express this succinctly, two set variables (of references)

are declared, which will be resolved automatically at runtime:

We need to ensure that when a service runs_on a given

machine, that the machine provides the required capabilities,

and that the amount of CPU and RAM consumed by other

services running on the same machine does not exceed that

provided.

