
This work was funded by Microsoft Research through
their European PhD Scholarship Program.

Devices Security

Cloud Enterprise

System	

Configuration

System 	

Administrator

Version	

Control

Client

Client

Client

 package {'apache':	
 ensure => installed	
 }

sudo apt-get -y install apache

all_different(xs, ys)  
!
contains(x, xs)	
!
intersection(xs, ys)

ConfSolve	

Compiler

Model	

ConfSolve

Solution	

CSON

 MiniZinc
 Compiler

 CSP Solver

A

B

C

A

C

B

But...

ConfSolve	

Compiler

Model	

ConfSolve Solution	

CSON

Parameters	

CSON

 MiniZinc
 Compiler

 CSP Solver

m

P1

Parameter Change

Migration

S1

m

P1

m

P2

S3

m

S1 S2

P2

m2m1

P1

S3

m2

P2

P2

S1

Parameters

model

Parameters

model

State

VM 2

VM 1

VM 4

VM 3

VM 1

VM 2

VM 3

VM 4

VM 5

VM 6

Migration: Adding Virtual Machines

class Machine {  
 var cpu as int = 8;  
 var memory as int = 16384;  
 var disk as int = 2048;  
}  
 
class VM {  
 var host as ref Machine;  
 var cpu as int = 1;  
 var memory as int = 768;  
 var disk as int = 20;  
}	
!

 forall m in machines {  
 sum vm in vms where vm.host = m {  
 vm.cpu;  
 } <= m.cpu  
 && ...  

change {  
 forall vm in vms { vm.host = ~vm.host; };  
}

0 200 400
0

5

10

15

Extra VMs

So
lv

e
Ti

m
e

(s
)

(a)

0 200 400
0

1

2

3

Extra VMs

M
em

or
y

(G
B

)

(b)

0 200 400

0

100

200

Extra VMs

R
ea

ss
ig

nm
en

ts Automatic
Custom
None

(c)

Figure 4: Adding Virtual Machines. a) Solve time, with timeout at 10 seconds indicated by the dashed line. The
automatic strategy quickly times-out. b) Solver memory usage, with high memory usage for the automatic strategy.
c) Solution quality, with 250 reassignments for the automatic strategy, and 50 for none.

automatic uses a simple heuristic in place of a model’s
change expressions

The automatic heuristic introduces a change con-
straint for each variable: maximize bool2int(v = ⇠v).
This allows us to measure the effectiveness of having
custom change constraints as a language feature, rather
than having them determined by the compiler automati-
cally.

We examine three reconfiguration scenarios, which
represent the three modes in which ConfSolve can oper-
ate: a migration, a parameterised model, and a migration
of a parameterised model.

Experimental Setup

The evaluation was performed on a machine with a
2.5GHz Intel Core 2 Quad processor and 8GB of
RAM, running Ubuntu 12.04. We used the 64-bit
MiniZinc to FlatZinc converter version 1.6.0 with the
--no-optimize flag, and the 64-bit Gecode FlatZinc
interpreter version 3.7.3.

5.1 Migration: Adding Virtual Machines

Figure 5: Two virtual machines are added to an existing
half-full datacenter.

This evaluation extends an evaluation used in the orig-
inal ConfSolve paper [9] to include reconfiguration via a

migration. We use ConfSolve to generate an assignment
of virtual machines to physical machines in an Infrastruc-
ture as a Service (IaaS) configuration, and then add more
virtual machines as a migration. Figure 5 illustrates this
scenario.

Each physical machine is identical, having 8 CPUs
and 16GB or memory. Each virtual machine has vari-
ables representing its requirements on the physical ma-
chine resources. These are declared as follows:

class Machine {
var cpu as int = 16; // 8-core x 1/2
var memory as int = 16384; // 16GB
var disk as int = 2048; // 2TB

}

class VM {
var host as ref Machine;
var cpu as int = 1;
var memory as int = 768;
var disk as int = 20;

}

The infrastructure consists of two racks of 48 physi-
cal machines, onto which we wish to allocate 250 virtual
machines:

var machines as Machine[48];
var vms as VM[250];

A bin-packing constraint on virtual machine place-
ment prevents over-provisioning of host resources, i.e.,
for each physical machine the sum of required resources
must be less than the amount provided by the machine:

forall m in machines {
sum vm in vms where vm.host = m {
vm.cpu;

} <= m.cpu
&&

5

Time Memory Reassignments

Parameters: Virtual Server Failure

VM 1 VM 2

VM 3 VM 4

VM 2

VM 1

VM 4

VM 3

class Machine {  
 param online as bool;  
 ...	
}	
!
// VM host must be online  
forall vm in vms {  
 vm.host.online = true;  
};	
!
// distribute VMs across hosts  
minimize sum vm1 in vms {  
 count (vm2 in vms where vm1.host = vm2.host);  
}

 // keep VMs on online hosts  
 change {  
 forall m in machines where m.online && ~m.online {  
 forall vm in vms where ~vm.host = m {  
 vm.host = ~vm.host;  
 }  
 }  
 }

0 100 200

0

5

10

VMs

So
lv

e
Ti

m
e

(s
)

Automatic
Custom
None

(a)

0 100 200

0

0.5

1

1.5

VMs

M
em

or
y

(G
B

)

(b)

0 100 200

0

100

200

VMs

R
ea

ss
ig

nm
en

ts

(c)

Figure 7: Virtual Server Failure. a) Solve time, showing a marginal advantage to the custom strategy. b) Solver
memory usage, with a significant advantage to the custom strategy. c) Solution quality, showing custom achiving 50%
reassignments, the minimum possible.

var webs as Web[200];
var workers as Worker[200];
var databases as Database[100];

So that we may more easily quantify over all services,
a set of service references is created, which the solver
will automatically resolve to the declarations above:

var services as ref Service[500];

A bin-packing constraint for the services hosted in the
enterprise should be familiar from the previous exam-
ples:

forall m in enterprise {
sum s in services where s.host = m {
s.cpu;

} <= m.cpu
&&
sum s in services where s.host = m {
s.memory;

} <= m.memory;
};

We do not wish to host services in the cloud if there is
available capacity within the enterprise. The constraint
below states that if the number of services hosted in the
cloud is greater than zero, then the number of services
hosted in the enterprise is equal to the number of enter-
prise machines which are online. ConfSolve uses the ->
operator for logical implication:

count (s in services
where s.host = cloud) > 0 ->

count (s in services
where s.host in enterprise) =
count (m in enterprise

where m.online);

We constrain services to be placed only on machines
which are online:

forall s in services {
s.host.online = true;

};

Finally, a reconfiguration constraint, similar to that
from section 5.2, which requires each service to remain
on its previous host as long as that host was previously
online and is so currently. This applies only to machines
within the enterprise, not the cloud:

change {
forall m in enterprise

where m.online && ~m.online {
forall s in services

where ~s.host = m {
vm.host = ~s.host;

};
};

}

To perform the evaluation, an initial configuration is
performed, after which the number of Worker services is
doubled by manually editing the model, as a migration.
Additionally, 50% of the machines have their online pa-
rameter set to false.

The results of scaling the problem up to 300 machines
are shown in Figure 9. With regard to time, custom
change expressions narrowly outperform the none strat-
egy, while the automatic strategy tends rapidly towards a
solver timeout at 60 seconds. In terms of memory perfor-
mance, custom change expressions significantly outper-
form both of the other strategies, showing much better
scaling.

The quality of the solutions follow a new pattern. Both
the custom and automatic strategies achieve a perfect re-
configuration, in which only 50% of the services are re-

8

Time Memory Reassignments

Service 2

Service 1

Service 4

Service 3

Service 6

Service 5

Service 4

Service 3

Service 6

Service 5

Service 8

Service 7

Service 10

Service 9

Service 12

Service 11

Service 2

Service 1

Migration with Parameters: Cloudbursting

abstract class Host {}	

 class Machine extends Host {  
 param online as bool;  
 var cpu as int = 4;  
 var memory as int = 4096;  
 }

 class Cloud extends Host {}

 abstract class Service {  
 var host as ref Host;  
 var cpu as int;  
 var memory as int;  
 }  

 class Web extends Service {  
 cpu = 2;  
 memory = 2048;  
 }  

 class Worker extends Service {  
 cpu = 2;  
 memory = 2048;  
 }  

 class Database extends Service {  
 cpu = 4;  
 memory = 4096;  
 }

 // all service hosts online ...	
 // bin-pack in the enterprise ...  

 // fill the enterprise before using the cloud  
 count (s in services where s.host = cloud) > 0 ->  
 count (s in services where s.host in enterprise) =  
 count (m in enterprise where m.online);

 // keep VMs on online hosts  
 change {  
 forall m in enterprise where m.online && ~m.online {  
 forall s in services where ~s.host = m {  
 vm.host = ~s.host;  
 };  
 };  
 }

0 100 200 300

0

20

40

60

80

Enterprise Machiness

So
lv

e
Ti

m
e

(s
)

(a)

0 100 200 300

0

2

4

6

Enterprise Machines

M
em

or
y

(G
B

)

(b)

0 100 200 300

0

100

200

300

Enterprise Machines

R
ea

ss
ig

nm
en

ts

Automatic
Custom
None

(c)

Figure 9: Cloudbursting. a) Solve time, showing the automatic strategy timing-out at 60 seconds. b) Solver memory
usage, with a significant advantage to the custom strategy. c) Solution quality, showing custom and automatic achieving
50% reassignments, the minimum possible, until automatic times-out at around 225 machines.

initial version of ConfSolve, like its predecessors, was
intended for one-off configuration tasks only.

7 Conclusion and Future Work

We have added reconfiguration primitives to an object-
oriented system configuration language in which con-
straints are used to specify valid configurations. Our
reconfiguration models are translated into the constraint
modelling language MiniZinc, and solutions found using
a state-of-the-art constraint solver. Writing a complex re-
configuration model in ConfSolve with our extensions is
considerably simpler than attempting to model state di-
rectly in ConfSolve, or implementing the corresponding
problem directly in MiniZinc. While the scalability of
any constraint-based model is problem-specific, we have
shown that ConfSolve models are able to scale to prob-
lems of a practical size using common use-cases.

Reconfiguration is an important part of the config-
uration process, and incorporating it into a constraint-
based generative configuration system is non-trivial. We
have proposed new features for configuration languages
to better achieve this, and shown that state can be incor-
porated in a declarative manner compatible with existing
tools.

Future work in this area could take advantage of
the different performance profiles of different solvers,
or attempt to produced optimised MiniZinc constraints.
There is scope for expanding support for automated mi-
grations, and identifying when an inferred source change
can be safely applied to a new model.

Availability The ConfSolve compiler (v0.7) is written
in F# / OCaml and is available for download at http:
//homepages.inf.ed.ac.uk/s0968244/confsolve

Acknowledgements This work was funded by Mi-
crosoft Research through their European PhD Scholar-
ship Programme.

References

[1] ANDERSON, P., GOLDSACK, P., AND PATERSON, J. SmartFrog
meets LCFG: Autonomous reconfiguration with central policy
control. In Proceedings of the 17th conference on Large Installa-
tion System Administration Conference (2003), pp. 219–228.

[2] BURGESS, M., ET AL. CFEngine: a site configuration engine.
USENIX Computing systems 8, 3 (1995), 309–402.

[3] CASTALDI, M., COSTANTINI, S., GENTILE, S., AND TOC-
CHIO, A. A logic-based infrastructure for reconfiguring applica-
tions. In Declarative Agent Languages and Technologies, J. Leite,
A. Omicini, L. Sterling, and P. Torroni, Eds., vol. 2990 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp. 17–36.

[4] COUCH, A., AND GILFIX, M. It’s elementary, dear Watson:
applying logic programming to convergent system management
processes. In Proc. LISA ’99 (1999), USENIX.

[5] DELAET, T., AND JOOSEN, W. PoDIM: A language for high-
level configuration management. In Proceedings of LISA ’07
(2007), USENIX.

[6] FISCHER, J., MAJUMDAR, R., AND ESMAEILSABZALI, S. En-
gage: a deployment management system. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language De-
sign and Implementation (New York, NY, USA, 2012), PLDI ’12,
ACM, pp. 263–274.

[7] GOLDSACK, P., GUIJARRO, J., LOUGHRAN, S., COLES, A.,
FARRELL, A., LAIN, A., MURRAY, P., AND TOFT, P. The
SmartFrog configuration management framework. SIGOPS Oper.
Syst. Rev. 43 (January 2009), 16–25.

[8] HERMENIER, F., DEMASSEY, S., AND LORCA, X. Bin repack-
ing scheduling in virtualized datacenters, 2011.

[9] HEWSON, J., ANDERSON, P., AND GORDON, A. D. A declar-
ative approach to automated configuration. In 26th Large Instal-
lation System Administration Conference (LISA’12) (2012).

[10] HICKS, M., AND NETTLES, S. Dynamic software updating.
ACM Trans. Program. Lang. Syst. 27, 6 (Nov. 2005), 1049–1096.

10

Time Memory Reassignments

john.hewson@ed.ac.uk

mailto:john.hewson@ed.ac.uk

