
John Hewson & Paul Anderson

ConfSolve:
System Configuration with CSPs

2012 Oxford Configuration Workshop - 13th January 2012

University of Edinburgh

System Configuration

• physical machines, firewalls, networks, data-centres,
clouds.

• Security: proving some invariants hold over both
manually and automatically generated configurations.

• Scale of the cloud forces more automation

• but, bespoke enterprise systems are often more
complex.

2

Google

3

0

5

10

15

20

25

30

35

Config Software Human Network Hardware Other

Service'disrup,on'events'by'most'likely'cause'at'one'of'
Google’s'main'services,'over'6'weeks'(2009)'

The$Datacenter$asaComputer:AnIntroduc5ontothe$Design$of$Warehouse:Scale$Machines,$
Hoelzle$&$Barroso,$2009.$

%

Declarative Configuration

• LCFG - Anderson, 1993 - University of Edinburgh

• Cfengine - Burgess, 1993 - University College Oslo

• Bcfg2 - Desai, 2004 - Argonne National Laboratory

• Puppet - Reductive Labs, 2005

4

Declarative Configuration

5

package'{'apache':'
''''ensure'=>'installed'
}'

sudo'apt8get'–y'install'apache!

instead!of!

What’s Missing?

• The ability to verify that a configuration conforms to a
model

• The ability to infer valid configurations from a model

6

ConfSolve

• designed to be high-level and more familiar to system
administrators:

• object oriented (like Puppet, CIM)

• inheritance

• primitives: integer, booleans, sets, enums

• objects, object references, sets of object references

• quantification and summation over decision variables

7

ConfSolve - Architecture

ConfSolve Compiler

ConfSolve Specification

MiniZinc Compiler

MiniZinc Model

FD-CSP Solver (Gecode)

FlatZinc Model

Flat Solution

6

ConfSolve Post-Processor

ConfSolve Solution
ConfSolve

3rd party

Example
enum Network { Public, Private }

class Machine {
 var cpu as int
 var memory as int
 var disk as int
 var network as Network

 where cpu == 16 // 16 * 1/2 CPU
 where memory == 16384 // 16 GB
 where disk == 2048 // 2 TB
 where network == Network.Public
}

class Role {
 var host as ref Machine
 var disk as int
 var cpu as int
 var memory as int
 var network as Network
} 9

1

2

3

4

Example (ctd.)

class SmallRole extends Role {
 where cpu == 1
 where memory == 768
 where disk <= 20
}

class LargeRole extends Role {
 where cpu == 4
 where memory == 3584
 where disk <= 490
}

10

Example (ctd.)

var machines as Machine[2]

var sql_server as LargeRole
where sql_server.disk == 412

var web_server as SmallRole
where web_server.disk == 15
where web_server.network == Network.Public

11

Example (ctd.)
var roles as ref Role[2]

where foreach (m in machines) {
 sum (r in roles where r.host == m) {
 r.cpu
 } <= m.cpu

 sum (r in roles where r.host == m) {
 r.memory
 } <= m.memory

 sum (r in roles where r.host == m) {
 r.disk
 } <= m.disk
}

12

1

2
3

class Role {
 var host as ref Machine

Example (solution)
roles: Role {sql_server, web_server}

machines[1]: Machine {
 cpu: 16;
 memory: 16384;
 disk: 2048;
 network: Public;
}

machines[2]: Machine {
 cpu: 16;
 memory: 16384;
 disk: 2048;
 network: Public;
}

sql_server: LargeRole {
 disk: 412;
 cpu: 4;
 memory: 3584;
 network: Public;
 host: machines[1];
}

web_server: SmallRole {
 disk: 15;
 cpu: 1;
 memory: 768;
 network: Public;
 host: machines[1];
} 13

1

2

Optimisation

• Often want to optimise some aspect of the configuration

• or express (soft) preferences rather than (hard)
constraints.

• MiniZinc and Gecode support maximisation of an
objective function.

14

Example: Cloudbursting

15

class Machine;

class Service {
 var host as ref Machine;
}

class Datacenter {
 var machines as Machine[8];
}

var cloud as Datacenter;
var enterprise as Datacenter;

var dhcp as Service[1];
var dns as Service[1];
var workers as Service[1];

// favour placement of machines in the enterprise datacenter
var utilization as int;
where utilization == count (s in services where s.host in enterprise.machines);

maximize utilization;

16

Enterprise

DNS WorkerDHCP

Cloud

Without Optimisation

SMTP HTTP

17

Enterprise

DNS

Worker

DHCP SMTP HTTP

Cloud

With Optimisation

18

Enterprise

DNS

Worker

DHCP SMTP HTTP

Cloud

With Optimisation

18

Enterprise

DNS

Worker

DHCP SMTP HTTP

Worker Worker Worker

Cloud

With Optimisation

19

Enterprise

DNS

Worker

DHCP

Worker

SMTP

Worker

HTTP

Worker

Cloud

With Optimisation

19

Enterprise

DNS

Worker

DHCP

Worker

SMTP

Worker

HTTP

Worker

Cloud

Worker Worker Worker

With Optimisation

Re-Configuration

20

21

Enterprise

DNS

Worker

DHCP

Worker

SMTP

Worker

HTTP

Worker

Cloud

Re-Configuration

21

Enterprise

DNS

Worker

DHCP

Worker

SMTP

Worker

HTTP

Worker

Cloud

Worker Worker Worker

Re-Configuration

22

Enterprise

DNS

Worker

DHCP

Worker

SMTP

Worker

HTTP

Worker

Cloud

Worker Worker Worker

Re-Configuration

22

Enterprise

DNS

Worker

DHCP Worker

SMTP Worker

HTTP

Worker

Cloud

Worker Worker Worker Worker

Worker Worker

Re-Configuration

Re-Configuration:
Ongoing & Future Work

• Implementation based on system state, expressed as a an
objective function in MiniZinc and solved with Gecode.

• Preference constraints without weighting

• ROADEF Challenge 2012 (Google Process Placement)

• Tradeoff between minimising changes and maximising
objective function - e.g. scaling down of cloudbursting,
when does the cost of maintaining the existing location
of a server outweigh the cost of moving it?

23

This work was funded by Microsoft Research through their
European PhD Scholarship Programme.

