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System Configuration

• physical machines, firewalls, networks, data-centres, 
clouds.

• Security: proving some invariants hold over both 
manually and automatically generated configurations.

• Scale of the cloud forces more automation

• but, bespoke enterprise systems are often more 
complex.
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Declarative Configuration

• LCFG - Anderson, 1993 - University of Edinburgh

• Cfengine - Burgess, 1993 - University College Oslo

• Bcfg2 - Desai, 2004 - Argonne National Laboratory

• Puppet - Reductive Labs, 2005
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Declarative Configuration
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package'{'apache':'
''''ensure'=>'installed'
}'

sudo'apt8get'–y'install'apache!

instead!of!



What’s Missing?

• The ability to verify that a configuration conforms to a 
model

• The ability to infer valid configurations from a model
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ConfSolve

• designed to be high-level and more familiar to system 
administrators:

• object oriented (like Puppet, CIM)

• inheritance

• primitives: integer, booleans, sets, enums

• objects, object references, sets of object references

• quantification and summation over decision variables
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ConfSolve - Architecture

ConfSolve Compiler

ConfSolve Specification

MiniZinc Compiler

MiniZinc Model

FD-CSP Solver (Gecode)

FlatZinc Model

Flat Solution
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Example
enum Network { Public, Private }

class Machine {
  var cpu as int
  var memory as int 
  var disk as int  
  var network as Network
   
  where cpu == 16        // 16 * 1/2 CPU
  where memory == 16384  // 16 GB
  where disk == 2048     // 2 TB
  where network == Network.Public
}

class Role {
  var host as ref Machine
  var disk as int
  var cpu as int
  var memory as int
  var network as Network
} 9
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Example (ctd.)

class SmallRole extends Role {
  where cpu == 1
  where memory == 768
  where disk <= 20
}

class LargeRole extends Role {
  where cpu == 4
  where memory == 3584
  where disk <= 490
}
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Example (ctd.)

var machines as Machine[2]

var sql_server as LargeRole
where sql_server.disk == 412

var web_server as SmallRole
where web_server.disk == 15
where web_server.network == Network.Public
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Example (ctd.)
var roles as ref Role[2]

where foreach (m in machines) {
  sum (r in roles where r.host == m) {
    r.cpu
  } <= m.cpu
  
  sum (r in roles where r.host == m) {
    r.memory
  } <= m.memory
  
  sum (r in roles where r.host == m) {
    r.disk
  } <= m.disk
}
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class Role {
  var host as ref Machine



Example (solution)
roles: Role {sql_server, web_server}

machines[1]: Machine {
    cpu: 16;
    memory: 16384;
    disk: 2048;
    network: Public;
}

machines[2]: Machine {
    cpu: 16;
    memory: 16384;
    disk: 2048;
    network: Public;
}

sql_server: LargeRole {
    disk: 412;
    cpu: 4;
    memory: 3584;
    network: Public;
    host: machines[1];
}

web_server: SmallRole {
    disk: 15;
    cpu: 1;
    memory: 768;
    network: Public;
    host: machines[1];
} 13
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Optimisation

• Often want to optimise some aspect of the configuration

• or express (soft) preferences rather than (hard) 
constraints.

• MiniZinc and Gecode support maximisation of an 
objective function.
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Example: Cloudbursting
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class Machine;

class Service {
   var host as ref Machine;
}

class Datacenter {
   var machines as Machine[8];
}

var cloud as Datacenter;
var enterprise as Datacenter;

var dhcp as Service[1];
var dns as Service[1];
var workers as Service[1];

// favour placement of machines in the enterprise datacenter
var utilization as int;
where utilization == count (s in services where s.host in enterprise.machines);

maximize utilization;
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Re-Configuration
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Re-Configuration:
Ongoing & Future Work

• Implementation based on system state, expressed as a an 
objective function in MiniZinc and solved with Gecode.

• Preference constraints without weighting

• ROADEF Challenge 2012 (Google Process Placement)

• Tradeoff between minimising changes and maximising 
objective function - e.g. scaling down of cloudbursting, 
when does the cost of maintaining the existing location 
of a server outweigh the cost of moving it?
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