
Automated System Configuration
John Hewson, Paul Anderson, Andy Gordon*

Univrsity of Edinburgh. *also Microsoft Research, Cambridge

Abstract

The complexity of typical computing installations has in-
creased to the point where automated configuration is
desirable. We are developing a high-level, declarative
specification language (ConfSolve) for system configura-
tion, from which valid configurations are inferred via
compilation of the specification into a Constraint Satisfac-
tion Problem (CSP). A key issue we are focusing on is the
minimisation of the number of changes which occur when
performing a re-configuration.

Cloudbursting

To examine the problem of minimal changes, we present
an example of Cloudbursting - whereby an enterprise
scales-up their virtual machine placement into the cloud.

ConfSolve

ConfSolve is object-oriented, in keeping with popular
modern system configuration tools such as Puppet, a sim-
ple class model describes the datacenter classes and rela-
tionships:

class Service {
 var host as ref Machine;
}
class Datacenter {
 var machines as Machine[8]
}

class Machine {
}

class Web_Service extends Service {
}

class Worker_Service extends Service {
}

class DHCP_Service extends Service {
}

We now declare two datacenters: enterprise and cloud,
and 3 services which will be run on them.

var cloud as Datacenter
var enterprise as Datacenter

var dhcp as DHCP_Service[2]
var worker as Worker_Service[2]
var web as Web_Service[3]

These services will be placed according to the following
constraints:

// no two services on same machine
var services as ref Service[7]

where foreach (s1 in services) {
 foreach (s2 in services) {
 if (s1 != s2) {
 s1.host != s2.host
 }
 }
}

We don’t want to scale-up into the cloud if the enterprise
datacenter still has capacity, so we add the following con-
straint:

// favour placement of machines in the enterprise
var utilization as int

where utilization == count (s in services where
s.host in enterprise.machines)

maximize utilization

Solving the problem gives us the following configuration:

However, if we scale-up the number of workers, we get an
undesirable result - the placement of two machines in the
enterprise datacenter is unnecessarily switched:

ConfSolve can automatically add constraints to mimimise
the distance form the previous solution, the problem can
be avoided, and we get the expected configuration:

The next challenge is to allow the user to declaratively
specify which changes are more important than others,
and what his preferences are for optimising the original
problem, versus minimising the number of changes.

Acknowledgements
This work was supported by Microsoft Research through
its European PhD Scholarship Programme.

DHCP DHCP Worker Web

Web Worker Web Worker

Enterprise

Worker Worker Worker Worker

Worker Worker

Cloud

DHCP Worker Worker Web

Web Worker Web DHCP

Enterprise

Worker Worker Worker Worker

Worker Worker

Cloud

DHCP DHCP Worker Web

Web Worker Web Worker

Enterprise Cloud

