
John A. Hewson, Paul Anderson

A Declarative Approach to
Automated System Configuration

LISA ’12

University of Edinburgh

Andrew D. Gordon
Microsoft Research & University of Edinburgh

This work was funded by Microsoft Research through
their European PhD Scholarship Program.

Configuration is Hard

2

0

5

10

15

20

25

30

35

Config Software Human Network Hardware Other

Service'disrup,on'events'by'most'likely'cause'at'one'of'
Google’s'main'services,'over'6'weeks'(2009)'

The$Datacenter$asaComputer:AnIntroduc5ontothe$Design$of$Warehouse:Scale$Machines,$
Hoelzle$&$Barroso,$2009.$

%

What is System Configuration?

Configuring: physical machines, firewalls, networks,
datacenters, applications.

Security: proving some invariants hold over both
manually and automatically generated configurations.

Cloud: systems are large and force automation

Enterprise systems: are often very complex.

3

What is Declarative Configuration?

4

package {'apache':
 ensure => installed
}

sudo apt-get -y install apache

instead of...

Declarative Configuration Tools

• LCFG, Anderson, 1993, University of Edinburgh

• CFEngine, Burgess, 1993, University College Oslo

• Bcfg2, Desai, 2004, Argonne National Laboratory

• Puppet, Reductive Labs, 2005

5

But we’d like to...

The ability to verify that a configuration conforms to
a model

The ability to infer valid configurations from a model
How do we...

6

a) automatically find solutions?

b) write down the models in the first place?

ConfSolve

7

a) automatically find solutions?

ConfSolve: Architecture

Compiler

ConfSolve Model

6

ConfSolve
3rd party

MiniZinc Model MiniZinc Compiler

FlatZinc Model

CSP Solver

Post-Processor

Flat Solution

ConfSolve CSON

COMPILING

SOLVING

POST-PROCESSING

ConfSolve

9

b) write down the models in the first place?

The ConfSolve Language

• designed to be high-level and more familiar to system
administrators:

• object oriented (like Puppet, CIM)

• inheritance

• primitives: integer, booleans, sets, enums

• objects, object references, sets of object references

• quantification and summation over decision variables

10

Example: VMs (1)
enum Network { Public, Private }

class Machine {
 var cpu as int
 var memory as int
 var disk as int
 var network as Network

 cpu = 8 // 8 cores
 memory = 16384 // 16 GB
 disk = 2048 // 2 TB
 network = Network.Public
}

class VM {
 var host as ref Machine
 var disk as int
 var cpu as int
 var memory as int
 var network as Network
}

11

1

2

3

4

Example: VMs (2)

class SmallVM extends VM {
 cpu = 1
 memory = 1024 // 1GB
 disk <= 20 // 20GB
}

class LargeVM extends VM {
 cpu = 4
 memory = 4096 // 4GB
 disk <= 500 // 500GB
}

12

Example: VMs (3)

var machines as Machine[2]

var sql_server as LargeVM
sql_server.disk = 412

var web_server as SmallVM
web_server.disk = 15
web_server.network = Network.Public

13

Example: VMs (4)

var vms as ref VM[2]

where foreach (m in machines) {
 sum (vm in vms where vm.host == m) {
 vm.cpu
 } <= m.cpu

 sum (vm in vms where vm.host == m) {
 vm.memory
 } <= m.memory

 sum (vm in vms where vm.host == m) {
 vm.disk
 } <= m.disk
}

14

1

2
3

class Role {
 var host as ref Machine

Solution (CSON)
vms: VM {sql_server, web_server}

machines[1]: Machine {
 cpu: 16;
 memory: 16384;
 disk: 2048;
 network: Public;
}

machines[2]: Machine {
 cpu: 16;
 memory: 16384;
 disk: 2048;
 network: Public;
}

sql_server: LargeVM {
 disk: 412;
 cpu: 4;
 memory: 3584;
 network: Public;
 host: machines[1];
}

web_server: SmallVM {
 disk: 15;
 cpu: 1;
 memory: 768;
 network: Public;
 host: machines[1];
}

15

*

Performance

16

VMs

Time (sec)

VMs

Memory (GB)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

T
i
m

e
(
s
e
c
)

(a)

0 200 400 600 800 1,000

0

50

100

150

200

VMs

T
i
m

e
(
s
e
c
)

(b)

0 200 400 600 800 1,000

0

2

4

6

VMs

M
e
m

o
r
y

(
G

B
)

(c)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

R
e
a
s
s
i
g
n
m

e
n
t
s

(d)

Figure 1: This is the top-level caption.

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

T
i
m

e
(
s
e
c
)

(a)

0 200 400 600 800 1,000

0

50

100

150

200

VMs

T
i
m

e
(
s
e
c
)

(b)

0 200 400 600 800 1,000

0

2

4

6

VMs

M
e
m

o
r
y

(
G

B
)

(c)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

R
e
a
s
s
i
g

n
m

e
n

t
s

(d)

Figure 1: This is the top-level caption.

1

Optimization

17

Optimization

• Often want to optimize some aspect of the configuration

• or express soft preferences rather than hard constraints.

• The underlying solver supports maximization of an
objective function.

• For ConfSolve this is not just useful, but essential...

18

Example: Cloudbursting

19

Enterprise

Cloud

20

Enterprise

DNS WorkerDHCP

Cloud

Without Optimization

SMTP HTTP

21

Enterprise

DNS WorkerDHCP

SMTP

HTTP

Cloud

With Optimization

22

Enterprise

DNS WorkerDHCP

SMTP

HTTP

Worker Worker Worker

Cloud

With Optimization

23

Enterprise

DNS WorkerDHCP

WorkerSMTP Worker

HTTP

Worker

Cloud

Worker Worker Worker

With Optimization

Example: Cloudbursting

24

class Machine;

class Service {
 var host as ref Machine;
}

class Datacenter {
 var machines as Machine[8];
}

var cloud as Datacenter;
var enterprise as Datacenter;

var dhcp as Service[1];
var dns as Service[1];
var workers as Service[3];

maximize count (s in services
 where s.host in enterprise.machines);

4

3

2

3

Future Work

• Reconfiguration

- What happens the 2nd time we configure a system, or
the 3rd, 4th, 5th?

- How do we react to changes but minimize impact?

• ConfSolve provides a platform which could be used to
augment existing configuration languages

25

Thank You

http://homepages.ed.ac.uk/s0968244/

john.hewson@ed.ac.uk

@jahewson

