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Configuration is Hard
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What is System Configuration?

Configuring: physical machines, firewalls, networks, 
datacenters, applications.

Security: proving some invariants hold over both 
manually and automatically generated configurations.

Cloud: systems are large and force automation

Enterprise systems: are often very complex.
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What is Declarative Configuration?
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package {'apache':
  ensure => installed
} 

sudo apt-get -y install apache 

instead of...



Declarative Configuration Tools

• LCFG, Anderson, 1993, University of Edinburgh

• CFEngine, Burgess, 1993, University College Oslo

• Bcfg2, Desai, 2004, Argonne National Laboratory

• Puppet, Reductive Labs, 2005
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But we’d like to...

The ability to verify that a configuration conforms to 
a model

The ability to infer valid configurations from a model
How do we...
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a) automatically find solutions?

b) write down the models in the first place?



ConfSolve
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a) automatically find solutions?



ConfSolve: Architecture

Compiler

ConfSolve Model
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ConfSolve
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b) write down the models in the first place?



The ConfSolve Language

• designed to be high-level and more familiar to system 
administrators:

• object oriented (like Puppet, CIM)

• inheritance

• primitives: integer, booleans, sets, enums

• objects, object references, sets of object references

• quantification and summation over decision variables
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Example:  VMs (1)
enum Network { Public, Private }

class Machine {
  var cpu as int
  var memory as int 
  var disk as int  
  var network as Network
   
  cpu = 8         // 8 cores
  memory = 16384  // 16 GB
  disk = 2048     // 2 TB
  network = Network.Public
}

class VM {
  var host as ref Machine
  var disk as int
  var cpu as int
  var memory as int
  var network as Network
}
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Example:  VMs (2)

class SmallVM extends VM {
  cpu = 1
  memory = 1024  // 1GB
  disk <= 20     // 20GB
}

class LargeVM extends VM {
  cpu = 4
  memory = 4096  // 4GB
  disk <= 500    // 500GB
}
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Example:  VMs (3)

var machines as Machine[2]

var sql_server as LargeVM
sql_server.disk = 412

var web_server as SmallVM
web_server.disk = 15
web_server.network = Network.Public
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Example:  VMs (4)

var vms as ref VM[2]

where foreach (m in machines) {
  sum (vm in vms where vm.host == m) {
    vm.cpu
  } <= m.cpu
  
  sum (vm in vms where vm.host == m) {
    vm.memory
  } <= m.memory
  
  sum (vm in vms where vm.host == m) {
    vm.disk
  } <= m.disk
}
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class Role {
  var host as ref Machine



Solution (CSON)
vms: VM {sql_server, web_server}

machines[1]: Machine {
    cpu: 16;
    memory: 16384;
    disk: 2048;
    network: Public;
}

machines[2]: Machine {
    cpu: 16;
    memory: 16384;
    disk: 2048;
    network: Public;
}

sql_server: LargeVM {
    disk: 412;
    cpu: 4;
    memory: 3584;
    network: Public;
    host: machines[1];
}

web_server: SmallVM {
    disk: 15;
    cpu: 1;
    memory: 768;
    network: Public;
    host: machines[1];
}
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Performance

16

VMs

Time (sec)

VMs

Memory (GB)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

T
i
m

e
(
s
e
c
)

(a)

0 200 400 600 800 1,000

0

50

100

150

200

VMs

T
i
m

e
(
s
e
c
)

(b)

0 200 400 600 800 1,000

0

2

4

6

VMs

M
e
m

o
r
y

(
G

B
)

(c)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

VMs

R
e
a
s
s
i
g
n
m

e
n
t
s

(d)

Figure 1: This is the top-level caption.
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Figure 1: This is the top-level caption.

1



Optimization
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Optimization

• Often want to optimize some aspect of the configuration

• or express soft preferences rather than hard constraints.

• The underlying solver supports maximization of an 
objective function.

• For ConfSolve this is not just useful, but essential...
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Example:  Cloudbursting
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Example: Cloudbursting
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class Machine;

class Service {
   var host as ref Machine;
}

class Datacenter {
   var machines as Machine[8];
}

var cloud as Datacenter;
var enterprise as Datacenter;

var dhcp as Service[1];
var dns as Service[1];
var workers as Service[3];

maximize count (s in services
                where s.host in enterprise.machines);
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Future Work

• Reconfiguration

- What happens the 2nd time we configure a system, or 
the 3rd, 4th, 5th?

- How do we react to changes but minimize impact?

• ConfSolve provides a platform which could be used to 
augment existing configuration languages
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Thank You

http://homepages.ed.ac.uk/s0968244/

john.hewson@ed.ac.uk

@jahewson


