
Modelling System Administration Problems with
CSPs

John A. Hewson and Paul Anderson

School of Informatics, University of Edinburgh, United Kingdom
john.hewson@ed.ac.uk, dcspaul@ed.ac.uk

Abstract System administrators increasingly use declarative, object-
oriented languages to configure their systems. Introducing constraints to
such a language and automatically generating a valid system configura-
tion is an area of active research. We describe our work towards creating
ConfSolve, an object-oriented configuration language which can describe
constraints over valid configurations, solution of which is provided by
compilation into a CSP. We evaluate our solution against a simple vir-
tual machine allocation problem, with promising results for automating
Infrastructure as a Service (IaaS) systems.

1 Introduction

Configuration of large computing installations is increasingly performed by auto-
mated tools, which make use of declarative, object-oriented languages [4,7].
These tools replace low-level shell scripts describing how to achieve a system
state, with a high-level declarative model of the goal state of a system. Such tools
have proven popular amongst system administrators configuring large sites, and
are used to configure workstations, servers, and routing hardware. Infrastructure
is increasingly virtualised, allowing more of it to be dynamically reconfigured to
provision new services, reduce consumed resources, or respond to a hardware
failure. Yet much of this work is done by hand, which is inefficient and error-
prone.

Recently there has been interest in extending such tools to include variables
which are not given an explicit value by a system administrator, but instead
have constraints specified over them. Research into implementing basic versions
of such systems has made use of constraints solved via SAT [8,5], the ECLiPSe
[4] constraint logic programming system, and an adapted form of CSP [2].

There is a need for a general-purpose system configuration language which
can be used to model a broad range of configuration problems involving con-
straints, in an easy-to-use manner. As the current state-of-the-art system con-
figuration languages are object-oriented, we believe that any such configuration
language must also be. It is desirable to compile constraints written in such a
language into a lower-level description of the problem, for which CSP is a natural
candidate.

We have developed a proof-of-concept system configuration language, in
which constraints over valid solutions are described, and valid concrete con-
figurations generated, via a CSP solver. Our goal is to create a language general
enough to describe a large range of configuration problems, in a manner natural
to a system administrator, and simpler than writing a model in a constraint
programming language. This paper describes our initial work towards that goal.

2 The ConfSolve Compiler

The architecture of the ConfSolve compilation process is shown in figure 1. First,
a system configuration specification written in ConfSolve is compiled into the
standard constraint programming language MiniZinc [6]. It is then solved using
the Gecode [3] constraint solver, the output of which is parsed back into the
ConfSolve compiler, and combined with the original ConfSolve model to produce
structured text output similar to JavaScript Object Notation (JSON). We use
the structured text to generate configuration files for the system configuration
tool Puppet [7], and the visualisation tool GraphViz. By generating configuration
files for Puppet, we avoid the need for ConfSolve to perform system configuration
tasks itself, so we need concern ourselves only with the compilation process.

ConfSolve  
Compiler "

CONFSOLVE"
INSTANCE"

CONFSOLVE"
SPECIFICATION" MINI ZINC" FLAT ZINC" SOLUTION"MiniZinc  

Compiler "
CSP Solver  
Gecode!

ConfSolve  
Parser"

Figure 1. The architecture of ConfSolve. A ConfSolve instance is a structured text file
representing a single solution.

2.1 The ConfSolve Language

ConfSolve aims to bridge the gap between existing object-oriented system config-
uration languages and solver input languages such as MiniZinc. It is designed to
be as familiar to system administrators as possible, providing object-orientation
with classes, inheritance, reference types, and enumerations, as well as a more
Java-like syntax, though this is still evolving. The remainder of the section in-
troduces the ConfSolve language by way of an example. A full grammar is given
in figure 2; we intend to provide a complete formal description in a later paper.

An example system administration task which could benefit from constraint
solving is the allocation of virtual machines onto an array of homogenous servers.
This set-up is typical of enterprises which have adopted IaaS (infrastructure as
a service), or cloud computing datacenters. A virtual machine is referred to as
a role and a physical machine as a machine; the goal is to allocate each role to

�spec� ::= �declaration�*
�declaration� ::= �class�

| �enum�
| �variable�

�class� ::= class �identifier� (extends �simple type�)? { �member�* }
�enum� ::= enum �identifier� { �identifier� (, �identifier�)* }

�member� ::= �variable�
| �constraint�

�variable� ::= var �identifier� as �type� �terminator�

�type� ::= �simple type�
| �ref type�

�simple type� ::= �identifier�
| �set type�

�set type� ::= �identfier� �set bounds�
�set bounds� ::= [(�int literal� ..)? �int literal�]

�ref type� ::= ref �simple type�
| ref (�set type�)

�constraint� ::= where �expression� �terminator�

�block� ::= { (�expression� �terminator�)* }
�expression� ::= �relational expr�

| �arithmetic expr�
| (�expression�)

�atom expr� ::= �identifier�
| �member expr�

�member expr� ::= �atom expr� . �identifier�
�relational expr� ::= true | false

| �atom expr�
| !�relational expr�
| �expression� �boolean op� �expression�
| �expression� �relational op� �expression�
| if (�expression�) �expression block�
| foreach (�identfier� in �atom expr� (where �relational expr�)?) �block�

�arithmetic expr� ::= �number�
| �atom expr�
| -�arithmetic expr�
| �arithmetic expr� �arithmetic op� �arithmetic expr�
| sum (�identfier� in �atom expr� (where �relational expr�)?) �block�
| card (�atom expr�)

�relational op� ::= == | != | < | > | <= | >= | in | subset | union | intersection
�boolean op� ::= && | || | -> | <->

�arithmetic op� ::= + | - | / | * | % | ^

�identifier� ::= (�letter� | _) (�letter� | _ |�digit�)
�number� ::= -? �digit�+

�terminator� ::= ; | �new line�

Figure 2. Grammar for the ConfSolve language. Whitespace is ignored, except when
evaluating the �terminator� rule.

a machine, so that the sum of the CPU, RAM, and disk space, required by each
role does not exceed that provided by the host machine.

In example 1a, we define a Machine class to represent the physical machines
in the system; these are homogenous with each having 16 units of CPU (1 unit
= 0.5 CPU), 16GB RAM, and 2TB of disk space. A machine may be on either
a public or a private network. Virtual machines extend the Role class, which
is available in the two different sizes, LargeRole and SmallRole. These define
the amount of CPU and RAM that the virtual machine requires, and place an
upper bound on the size of the disk space which it may require. The Role class
contains a variable host which is declared to be of type ref Machine; this is an
object reference to be resolved by the solver.

Example 1a ConfSolve type declarations

enum Network { Public, Private }

class Machine {
var cpu as int
var memory as int // MB
var disk as int // GB
var network as Network;

where cpu == 16
where memory == 16384
where disk == 2048
where network = Network.Public

}

class Role {
var host as ref Machine
var disk as int
var cpu as int
var memory as int
var network as Network

}

class SmallRole extends Role {
where cpu == 1
where memory == 768
where disk <= 20

}

class LargeRole extends Role {
where cpu == 4
where memory == 3584
where disk <= 490

}

In example 1b, we declare global variables and place constraints over them,
namely a set of two machine objects, and two role objects. To allow a constraint

to be written over all roles, the variable roles—a set of references to roles—
is introduced. Finally, a foreach constraint ensures that for each set of roles
hosted on a given machine, the sum of the consumed resources does not exceed
the resources provided by the host machine.

Example 1b ConfSolve instance and constraint declarations

var machines as Machine[2]

var sql_server as LargeRole
where sql_server.disk == 412

var web_server as SmallRole
where web_server.disk == 15
where web_server.network == Network.Public

var roles as ref Role[2]

where foreach (m in machines) {
sum (r in roles where r.host == m) {

r.cpu
} <= m.cpu

sum (r in roles where r.host == m) {
r.memory

} <= m.memory

sum (r in roles where r.host == m) {
r.disk

} <= m.disk
}

2.2 Compiling to MiniZinc

The compilation process from ConfSolve to MiniZinc consists of flattening the
object and reference types, unrolling foreach constraints, and replacing enums
with integer constants. The flattening process is still under development and
will be explained fully in a later paper, so instead we provide an overview of
the MiniZinc generated for the example problem given in this paper. Flatten-
ing of object references in ConfSolve introduces a large number of constraints
and variables into the corresponding MiniZinc, as does the unrolling of foreach
constraints.

Variables are flattened according to their nesting in the global scope; starting
at the top-level of the global scope, and proceeding downwards. Assignment of
constants is automatically determined in the case of equality where the left hand
side is a variable and the right hand side contains no variables. For each machine
in the machines set, MiniZinc of the following form is generated:

int : machines_1_cpu = 16;
int : machines_1_memory = 16384;
int : machines_1_disk = 2048;

This is the code for the object machines[1], the first element of the machines set. We
do not use MiniZinc’s set type because it does not allow the nesting of sets within sets,
likewise for MiniZinc’s array type. In this example there is no nesting, so an array could
be used, but we have left this as a compiler optimisation to be implemented later.

Each role (role_1, role_2), is flattened in a similar manner. As MiniZinc does not
have an enumeration type, we substitute Network values for integer constants:

int : sql__server_disk = 412;
int : sql__server_cpu = 4;
int : sql__server_memory = 3584;
var 0..1 : sql__server_network;

The underscore character is escaped as a double underscore to avoid name collisions,
for example if there were also a global variable sql with the attribute server.

Object references are encoded as integers. Each object is given a unique integer
identifier by the compiler, which is used to determine reference equality. The set of
references roles, and the host variables of the two roles are encoded as follows: (where
1,2 are the identifiers for the two machines, and 3,4 are identifiers for the two roles)

var set of {3, 4} : roles;
var {1, 2} : sql__server_host;
var {1, 2} : web__server_host;

The foreach and sum constraints are unrolled, because they are able to quantify
over sets of reference types—in this case both roles and machines—which MiniZinc
lacks. Unrolling creates a single expression, which for the the foreach/sum constraint
over cpu is of the form:

(bool2int(sql__server_host = 1) * bool2int(3 in roles) * sql__server_cpu) +
(bool2int(web__server_host = 1) * bool2int(4 in roles) * web__server_cpu)
<= machines_1_cpu
/\
(bool2int(sql__server_host = 2) * bool2int(3 in roles) * sql__server_cpu) +
(bool2int(web__server_host = 2) * bool2int(4 in roles) * web__server_cpu)
<= machines_2_cpu

Here, the expression bool2int(sql__server_host = 1) is used to determine refer-
ence equality, which corresponds to the ConfSovle sum filter where r.host == m. The
expression constraint bool2int(3 in roles) ensures that the roles set contains a
reference to the object in question—in this example, the constraint is redundant, but
our compiler does not yet identify this.

2.3 Generating Puppet

Once the generated MiniZinc has been solved by Gecode, the solution is parsed back
into the ConfSolve compiler, which maps the flat variable assignments back to an
object-oriented model, and outputs this in structured format similar to JSON. Example
2 shows the solution output for the example problem; we can see that the host variables
have been assigned references to the two physical machines.

Example 2 A ConfSolve solution for the example problem

roles: {sql_server, web_server};

machines[1]: Machine {
cpu: 16;
memory: 16384;
disk: 2048;
network: Public;

}

machines[2]: Machine {
cpu: 16;
memory: 16384;
disk: 2048;
network: Public;

}

sql_server: LargeRole {
disk: 412;
cpu: 4;
memory: 3584;
network: Public;
host: machines[1];

}

web_server: SmallRole {
disk: 15;
cpu: 1;
memory: 768;
network: Public;
host: machines[1];

}

The Puppet configuration tool consists of a central server, and a client running
on each machine. The clients periodically request their declarative configuration from
the server, which is converted into a sequence of imperative configuration steps on the
client, extensible via a plug-in system. There are a number of widely adopted system
configuration tools in existence, each with its own input language. Rather than tie
ConfSolve to a particular system, the structured text output in example 2 is instead
parsed by a separate program and converted into the appropriate format.

The generated Puppet code is shown in example 3. Each node is a physical ma-
chine, with an assigned set of roles. The roles SqlServer and WebServer are defined
by the administrator in other files; there is no need for these static elements of the
configuration to be encoded in ConfSolve. Ultimately the ConfSolve language could
be extended to support all the features of Puppet or vice versa, but this significant
undertaking is not necessary to conduct our research.

Example 3 Puppet code generated from ConfSolve solution file

node machine_1 {
include SqlServer

}

node machine_2 {
include WebServer

}

3 Evaluation

In order to determine the size of problem which our model representation can scale to,
we expanded the example in this paper by increasing both the number of physical and
virtual machines in the system. An enterprise using IaaS may wish to configure tens
of machines in one go, or several hundred—it is these systems which are of the most
interest to us. A cloud environment is much larger; as many as 10,000 virtual machines
may be configured at once, a task better suited to a carefully tailored model.

The ratio of physical to virtual machines was maintained at 1:4, and every virtual
machine is of size LargeRole. The evaluation was performed on a machine with a 2GHz
Intel Core i7 processor, using MiniZinc 2.2 and Gecode 3.5.0.

The time taken for mzn2fzn to convert our generated MiniZinc into the FlatZinc
is shown in figure 3a. The time is compared with the number of lines of MiniZinc
generated, because the foreach and sum expressions are unrolled by the ConfSolve
compiler, resulting in an exponential increase in the model size. The time taken for
mzn2fzn processing increases linearly with the problem size, but takes considerably
longer than we had anticipated. Figure 3c shows the time taken for Gecode to solve
the 520 virtual machines problem is just under 5000 milliseconds, but it took mzn2fzn
over 75 seconds to compile the MiniZinc, using over 1700MB of memory in the process
(see figure 3b).

As our test machine had 2GB of free memory, the largest problem we solved was 520
virtual machines, allocated across 130 physical machines. Figure 3c show that solving
took just under 5 seconds, consuming all 2GB of free memory (see figure 3d).

4 Conclusions and Future Work

We have developed an object-oriented system configuration language, in which con-
straints are used to specify valid configurations. The object-oriented code is compiled
to MiniZinc, and solved using the Gecode constraint solver. Writing an object-oriented
model in ConfSolve is simpler than implementing the corresponding problem directly
in MiniZinc. Evaluation of a simple virtual machine allocation problem showed that
despite its size, the flattened problem can be solved in a reasonable timeframe for some
IaaS configurations, but not for a cloud-sized configuration. For a large-scale configur-
ation where a solve time of an hour would be acceptable, the virtual machine problem
is memory-bound. We suspect that the bespoke and heterogeneous nature of IaaS
configurations will be of particular interest in future research. MiniZinc to FlatZinc
translation acted as a bottleneck, taking considerably longer to execute than the solver

a)

0

10000

20000

30000

40000

50000

60000

70000

80000

Ti
m
e
(m
s)

0 50000 100000 150000 200000 250000
Lines of MiniZinc

MiniZinc Time

b)

0

200

400

600

800

1000

1200

1400

1600

1800

M
em
or
y
(M
B)

0 50000 100000 150000 200000 250000
Lines of MiniZinc

MiniZinc Memory

c)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ti
m
e
(m
s)

0 100 200 300 400 500
Virtual Machines

Gecode Time

d)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
em
or
y
(M
B)

0 100 200 300 400 500
Virtual Machines

Gecode Memory

Figure 3. a) time taken for MiniZinc to generate the corresponding FlatZinc, in milli-
seconds b) memory consumed by MiniZinc, in megabytes b) time taken for Gecode to
find a solution to the FlatZinc encoded problem, in milliseconds d) memory consumed
by Gecode, in megabytes.

itself, but we have no reason to believe that this problem is fundamental, rather it
appears to be an implementation issue in mzn2fzn.

In future work, we plan to expand the ConfSolve language, and formally define both
it and the compilation process. Our flattening algorithm could readily be enhanced to
generate more efficient MiniZinc code: leaving unrolling for MiniZinc to perform where
possible, making use of arrays, and using global constraints where possible (such as
a bin-packing constraint). It would be desirable to break symmetry in the generated
MiniZinc models. We are currently investigating the use of refinement types [1], and
optimisation goals.

The example problem, documentation, and cross-platform binaries are available to
download at http://homepages.inf.ed.ac.uk/s0968244/modref2011.

Acknowledgements. Thanks to Andy Gordon of Microsoft Research for many help-
ful discussions. This work was funded by Microsoft Research through their European
PhD Scholarship Programme.

References

1. Bierman, G., Gordon, A., Langworthy, D.: Semantic Subtyping with an SMT Solver
(2010), http://research.microsoft.com/en-us/um/people/adg/Publications/
dminor.pdf

http://homepages.inf.ed.ac.uk/s0968244/modref2011
http://research.microsoft.com/en-us/um/people/adg/Publications/dminor.pdf
http://research.microsoft.com/en-us/um/people/adg/Publications/dminor.pdf

2. Fleishanderl, G., Friedrich, G., Haselbock, A., Schreiner, H., Stumptner, M.: Con-
figuring large systems using generative constraint satisfaction. IEEE Intelligent Sys-
tems and their applications 13(4), 59–68 (1998)

3. Gecode Team: Gecode: Genetic constraint development environment (2006), avail-
able from http://www.gecode.org

4. Goldsack, P., Guijarro, J., Loughran, S., Coles, A., Farrell, A., Lain, A., Murray, P.,
Toft, P.: The SmartFrog configuration management framework. SIGOPS Oper. Syst.
Rev. 43, 16–25 (January 2009), http://doi.acm.org/10.1145/1496909.1496915

5. Narain, S., Levin, G., Malik, S., Kaul, V.: Declarative infrastructure configuration
synthesis and debugging. Journal of Network and Systems Management 16(3), 235–
258 (2008)

6. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc:
Towards a standard CP modelling language. Principles and Practice of Constraint
Programming (CP 2007) pp. 529–543 (2007)

7. Puppet Labs: Puppet (2008), available from http://www.puppetlabs.com/puppet/
8. Ramshaw, L., Sahai, A., Saxe, J., Singhal, S.: Cauldron: A policy-based design

tool. In: 7th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY 2006). pp. 113–122 (2006)

http://www.gecode.org
http://doi.acm.org/10.1145/1496909.1496915
http://www.puppetlabs.com/puppet/

