
Constraint-Based Specifications for System
Configuration

John A. Hewson

Feb 14, 2011

Overview

• Cloud and IaaS configuration

• State-of-the-art: Declarative languages

• Modelling an IaaS problem

• Solving with CSP

• Future work: Semantics, usability, advanced features

2John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Configuration Errors Matter

Service disruption events by most likely cause at one of
Google’s main services, over 6 weeks (2009)

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines,
Hoelzle & Barroso, 2009.

3John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Cloud Computing = Platform as a Service (PaaS)

4John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

http://blog.softheme.com/cloud-services-
convenient-for-small-business/

e.g. Amazon S3, Google AppEngine. Not off-site VMware or Xen.

http://blog.softheme.com/cloud-services-convenient-for-small-business/

Why? Because individual cloud machines are not meant to be reliable.

http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/
http://blog.softheme.com/cloud-services-convenient-for-small-business/

Infrastructure as a Service (IaaS)

• Saves on infrastructure costs (both CapEx and OpEx)

• VMware is used by 98% of Fortune 500 companies

• Can even move running VMs in near-realtime

5John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Traditional IaaS

http://www.vmware.com/company/customers/

VS.

Configuration – solutions?

Rise of declarative tools for UNIX:

• LCFG (1993, Anderson, University of Edinburgh)
– configures your DICE machine!

• Cfengine (1993, Burgess, Oslo University College)

• Bcfg2 (2004, Desai, Argonne National Laboratory)

• Puppet (2005, Kanies, Independent)

6John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Puppet

• Used at major web companies: Twitter, match.com, Zynga

• Open Source (GPL)

• Configures UNIX-like systems, abstracting over differences

• Declarative language. For example, we write

7John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

package {'apache':

ensure => installed

}

sudo apt-get –y install apache

instead of

What’s Missing?

• Constraints!

• The ability to verify that a configuration conforms to a model

• The ability to infer valid configurations from a model
– Much more powerful

– Now required for IaaS and cloud-scale systems,
as the problems are too time-consuming for humans to solve.

• Let’s look at an example…

8John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Some IaaS Problems in the Enterprise

• How can we assign VMs to physical machines?
– With CPU, RAM, I/O requirements

– With co-location requirements (e.g. distribute redundant VMs)

– In Compliance (e.g. following credit card data rules)

– Following Firewall rules (or changing them)

• How can we optimise:
– The VM assignments above

– Latency between pairs of machines

– Power consumption

– Licensing (e.g. per-CPU)

– Robustness (e.g. redundancy)

– Performance (e.g. database cache)

– SLAs (e.g. minimise cost of violation)

9John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Problem

• Service–Machine Allocation

• 4 Services

• 3 Machines

• Each machine has a fixed:
– Scalar amount of RAM

– Scalar number of CPUs

– Boolean set of capabilities (e.g RAID5, Gigabit Ethernet)

• Each service has fixed requirements over these values

• Q: Which services run on which machines?

10John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Spreadsheet

Microsoft Solver Foundation - http://www.solverfoundation.com/

11John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Specification (Classes)

12John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Specification

13John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

component Machine {
var cpu as int;
var memory as int;

}

component Service {
var required_cpu as int;
var required_memory as int;
var runs_on as ref Machine;

}

...

Example: Specification

14John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

component FrontEnd extends Service {
where required_cpu == 1;
where required_memory == 512;
where required_capabilities == {IsIISEnabled, HasGigEther};

}

component Monster extends Machine {
where required_cpu == 1;
where required_memory == 512;
where required_capabilities == {IsIISEnabled, HasDualProc,

HasQuadProc, HasRAID5};
}

...

Example: Specification

15John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

root component System {
var typical as Typical;
var monster as Monster;
var chatter as Chatter;

var front_end as FrontEnd;
var omniscient as Omniscient;
var industrious as Industrious;
var schizoid as Schizoid;

...
}

Example: Specification

16John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

var machines as (ref Machine)[3];
var services as (ref Service)[4];

foreach(m in machines, s in services where s.runs_on == m)
{

sum(s.required_cpu) <= m.cpu &&
sum(s.required_memory) <= m.memory &&
s.required_capabilities in m.capabilities;

}

Example: Specification (Instances)

17John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Constraint-Satisfaction Problem (CSP)

• Closely related to SAT and SMT solvers.

• Problem is described as a sets of variables, domains, and
constraints.

• Everything is finite – complete, decidable. Very desirable properties.

• Modern solvers also support optimisation, local search, and soft
constraints.

• N-queens problem: or Sudoku:

18John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

The Code Project http://radialmind.blogspot.com

Auto-Generated CSP Code (MiniZinc)

19John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

/* variables */
var int : root_typical_cpu;
var int : root_typical_memory;
var int : root_monster_cpu;
var int : root_monster_memory;
var int : root_chatter_cpu;
var int : root_chatter_memory;
var int : root_front__end_required__cpu;
var int : root_front__end_required__memory;
var int : root_omniscient_required__cpu;
var int : root_omniscient_required__memory;
var int : root_industrious_required__cpu;
var int : root_industrious_required__memory;
var int : root_schizoid_required__cpu;
var int : root_schizoid_required__memory;
var {1, 2, 3} : root_front__end_runs__on;
var {1, 2, 3} : root_omniscient_runs__on;
var {1, 2, 3} : root_industrious_runs__on;
var {1, 2, 3} : root_schizoid_runs__on;

/* constraints */
/* System */ constraint (((((bool2int((root_front__end_runs__on = 2)) * root_front__end_required__cpu) + (bool2int((root_omniscient_runs__on = 2)) *
root_omniscient_required__cpu)) + (bool2int((root_industrious_runs__on = 2)) * root_industrious_required__cpu)) + (bool2int((root_schizoid_runs__on = 2)) *
root_schizoid_required__cpu)) <= root_monster_cpu);
/* System */ constraint (((((bool2int((root_front__end_runs__on = 2)) * root_front__end_required__memory) + (bool2int((root_omniscient_runs__on = 2)) *
root_omniscient_required__memory)) + (bool2int((root_industrious_runs__on = 2)) * root_industrious_required__memory)) + (bool2int((root_schizoid_runs__on = 2)) *
root_schizoid_required__memory)) <= root_monster_memory);
/* System */ constraint (((((bool2int((root_front__end_runs__on = 1)) * root_front__end_required__cpu) + (bool2int((root_omniscient_runs__on = 1)) *
root_omniscient_required__cpu)) + (bool2int((root_industrious_runs__on = 1)) * root_industrious_required__cpu)) + (bool2int((root_schizoid_runs__on = 1)) *
root_schizoid_required__cpu)) <= root_typical_cpu);
/* System */ constraint (((((bool2int((root_front__end_runs__on = 1)) * root_front__end_required__memory) + (bool2int((root_omniscient_runs__on = 1)) *
root_omniscient_required__memory)) + (bool2int((root_industrious_runs__on = 1)) * root_industrious_required__memory)) + (bool2int((root_schizoid_runs__on = 1)) *
root_schizoid_required__memory)) <= root_typical_memory);
/* System */ constraint (((((bool2int((root_front__end_runs__on = 3)) * root_front__end_required__cpu) + (bool2int((root_omniscient_runs__on = 3)) *
root_omniscient_required__cpu)) + (bool2int((root_industrious_runs__on = 3)) * root_industrious_required__cpu)) + (bool2int((root_schizoid_runs__on = 3)) *
root_schizoid_required__cpu)) <= root_chatter_cpu);
/* System */ constraint (((((bool2int((root_front__end_runs__on = 3)) * root_front__end_required__memory) + (bool2int((root_omniscient_runs__on = 3)) *
root_omniscient_required__memory)) + (bool2int((root_industrious_runs__on = 3)) * root_industrious_required__memory)) + (bool2int((root_schizoid_runs__on = 3)) *
root_schizoid_required__memory)) <= root_chatter_memory);
/* Typical */ constraint ((root_typical_cpu = 3) /\ (root_typical_memory = 2048));
/* Monster */ constraint ((root_monster_cpu = 12) /\ (root_monster_memory = 16384));
/* Chatter */ constraint ((root_chatter_cpu = 2) /\ (root_chatter_memory = 1024));
/* FrontEnd */ constraint ((root_front__end_required__cpu = 1) /\ (root_front__end_required__memory = 512));
/* Omniscient */ constraint ((root_omniscient_required__cpu = 6) /\ (root_omniscient_required__memory = 4096));
/* Industrious */ constraint ((root_industrious_required__cpu = 1) /\ (root_industrious_required__memory = 512));
/* Schizoid */ constraint ((root_schizoid_required__cpu = 2) /\ (root_schizoid_required__memory = 1024));

solve satisfy;

CSP Solution

• Used the Gecode CSP Solver, which supports:
– Backtracking search

– Local search

– Optimisation functions

– Decision heuristics

• Takes < 400ms (hard to benchmark tiny problems)

• Lets show the solution visually…

20John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Problem (Instances)

21John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Example: Solution (Instances)

22John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

On-Going & Future Work

• Formally defined semantics for the configuration language,
including:
– Refinement Types (e.g. x:int where x > 4)

– Optimisation Functions

– Soft Constraints (Preferences)

• Minimum-change goal (for Re-Configuration)

• Usability

• Generate Puppet code using templates

23John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

Summary

• Cloud and IaaS configuration
– Cloud = PaaS

– Enterprise = IaaS

• State-of-the-art: Declarative languages
– LCFG, Cfengine, Puppet

• Modelling an IaaS problem
– New declarative language

• Solving with CSP
– Using the Gecode solver

• Future work
– Semantics, usability, advanced features

24John A. Hewson | Constraint-Based Specifications for System ConfigurationFeb 14, 2011

